Operator-valued extensions of matrix-norm inequalities
نویسنده
چکیده
The bilinear inequality is derived from the linear one with the help of an operatorvalued version of the Cauchy-Schwarz inequality. All these results, at least in their finite form, are obtained by simple and elegant methods well within the scope of a basic course on Hilbert spaces. (They can alternatively be obtained by tensor product techniques, but in the author’s view, these methods are less simple and decidedly less elegant!)
منابع مشابه
Some inequalities involving lower bounds of operators on weighted sequence spaces by a matrix norm
Let A = (an;k)n;k1 and B = (bn;k)n;k1 be two non-negative ma-trices. Denote by Lv;p;q;B(A), the supremum of those L, satisfying the followinginequality:k Ax kv;B(q) L k x kv;B(p);where x 0 and x 2 lp(v;B) and also v = (vn)1n=1 is an increasing, non-negativesequence of real numbers. In this paper, we obtain a Hardy-type formula forLv;p;q;B(H), where H is the Hausdor matrix and 0 < q p 1. Also...
متن کاملA Sharp Maximal Function Estimate for Vector-Valued Multilinear Singular Integral Operator
We establish a sharp maximal function estimate for some vector-valued multilinear singular integral operators. As an application, we obtain the $(L^p, L^q)$-norm inequality for vector-valued multilinear operators.
متن کاملFurther inequalities for operator space numerical radius on 2*2 operator matrices
We present some inequalities for operator space numerical radius of $2times 2$ block matrices on the matrix space $mathcal{M}_n(X)$, when $X$ is a numerical radius operator space. These inequalities contain some upper and lower bounds for operator space numerical radius.
متن کاملWeighted norm inequalities for a class of rough singular integrals
Weighted norm inequalities are proved for a rough homogeneous singular integral operator and its corresponding maximal truncated singular operator. Our results are essential improvements as well as extensions of some known results on the weighted boundedness of singular integrals.
متن کاملar X iv : 0 80 5 . 01 58 v 1 [ m at h . FA ] 1 M ay 2 00 8 OPERATOR - VALUED DYADIC BMO SPACES
We consider BMO spaces of operator-valued functions, among them the space of operator-valued functions B which define a bounded paraproduct on L(H). We obtain several equivalent formulations of ‖πB‖ in terms of the norm of the ”sweep” function of B or of averages of the norms of martingales transforms of B in related spaces. Furthermore, we investigate a connection between John-Nirenberg type i...
متن کامل